Reduction of Soot Formation in an Optical Single-Cylinder Gasoline Direct-Injected Engine Operated in Stratified Mode Using 350 Bar Fuel Injection Pressure, Dual-Coil and High-Frequency Ignition Systems
Artikel i vetenskaplig tidskrift, 2017

The current trend toward more fuel efficient vehicles with lower emission levels has prompted development of new combustion techniques for use in gasoline engines. Stratified combustion has been shown to be a promising approach for increasing the fuel efficiency. However, this technique is hampered by drawbacks such as increased particulate and standard emissions. This study attempts to address the issues of increased emission levels by investigating the influence of high frequency ionizing ignition systems, 350 bar fuel injection pressure and various tumble levels on particulate emissions and combustion characteristics in an optical SGDI engine operated in stratified mode on isooctane. Tests were performed at one engine load of 2.63 bar BMEP and speed of 1200 rpm. Combustion was recorded with two high speed color cameras from bottom and side views using optical filters for OH and soot luminescence. The results indicated that increasing the fuel injection pressure led to faster burn as well as a reduction in soot luminescence. The ionizing ignition system generated faster initial combustion. Increasing the tumble level reduced the soot luminescence at all injection pressures, but the influence was largest at the lowest fuel injection pressure. The combination of an ionizing ignition system and high fuel pressure was most beneficial for lowering soot luminescence.

Författare

Anders Johansson

Chalmers, Tillämpad mekanik, Förbränning och framdrivningssystem

Stina Hemdal

Chalmers, Tillämpad mekanik, Förbränning och framdrivningssystem

Petter Dahlander

Chalmers, Tillämpad mekanik, Förbränning och framdrivningssystem

SAE International Journal of Engines

1946-3936 (ISSN) 19463944 (eISSN)

Vol. 10 3 709-721

Ämneskategorier

Maskinteknik

DOI

10.4271/2017-01-9278

Mer information

Senast uppdaterat

2022-04-06