Polar Side Chains Enhance Processability, Electrical Conductivity, and Thermal Stability of a Molecularly p-Doped Polythiophene.
Artikel i vetenskaplig tidskrift, 2017

Molecular doping of organic semiconductors is critical for optimizing a range of optoelectronic devices such as field-effect transistors, solar cells, and thermoelectric generators. However, many dopant:polymer pairs suffer from poor solubility in common organic solvents, which leads to a suboptimal solid-state nanostructure and hence low electrical conductivity. A further drawback is the poor thermal stability through sublimation of the dopant. The use of oligo ethylene glycol side chains is demonstrated to significantly improve the processability of the conjugated polymer p(g4 2T-T)-a polythiophene-in polar aprotic solvents, which facilitates coprocessing of dopant:polymer pairs from the same solution at room temperature. The use of common molecular dopants such as 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is explored. Doping of p(g4 2T-T) with F4TCNQ results in an electrical conductivity of up to 100 S cm(-1) . Moreover, the increased compatibility of the polar dopant F4TCNQ with the oligo ethylene glycol functionalized polythiophene results in a high degree of thermal stability at up to 150 °C.

electrical conductivity

molecular dopants


organic semiconductors


Renee Kroon

Kemi och kemiteknik, Tillämpad kemi, Polymerteknologi

David Kiefer

Kemi och kemiteknik, Tillämpad kemi, Polymerteknologi

Dominik Stegerer

Kemi och kemiteknik, Tillämpad kemi, Polymerteknologi

Liyang Yu

Kemi och kemiteknik, Tillämpad kemi, Polymerteknologi

Michael Sommer

Universitat Freiburg im Breisgau

Christian Müller

Kemi och kemiteknik, Tillämpad kemi, Polymerteknologi

Advanced Materials

09359648 (ISSN) 15214095 (eISSN)

Vol. 29 1700930- 1700930