Polar Side Chains Enhance Processability, Electrical Conductivity, and Thermal Stability of a Molecularly p-Doped Polythiophene.
Artikel i vetenskaplig tidskrift, 2017

Molecular doping of organic semiconductors is critical for optimizing a range of optoelectronic devices such as field-effect transistors, solar cells, and thermoelectric generators. However, many dopant:polymer pairs suffer from poor solubility in common organic solvents, which leads to a suboptimal solid-state nanostructure and hence low electrical conductivity. A further drawback is the poor thermal stability through sublimation of the dopant. The use of oligo ethylene glycol side chains is demonstrated to significantly improve the processability of the conjugated polymer p(g4 2T-T)-a polythiophene-in polar aprotic solvents, which facilitates coprocessing of dopant:polymer pairs from the same solution at room temperature. The use of common molecular dopants such as 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is explored. Doping of p(g4 2T-T) with F4TCNQ results in an electrical conductivity of up to 100 S cm(-1) . Moreover, the increased compatibility of the polar dopant F4TCNQ with the oligo ethylene glycol functionalized polythiophene results in a high degree of thermal stability at up to 150 °C.

molecular dopants

electrical conductivity

organic semiconductors



Renee Kroon

Chalmers, Kemi och kemiteknik, Tillämpad kemi

David Kiefer

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Dominik Stegerer

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Liyang Yu

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Michael Sommer

Albert-Ludwigs-Universität Freiburg

Christian Müller

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Advanced Materials

09359648 (ISSN) 15214095 (eISSN)

Vol. 29 24 1700930- 1700930









Mer information

Senast uppdaterat