Symmetries and nonequilibrium thermodynamics
Artikel i vetenskaplig tidskrift, 2017

Thermodynamic systems can be defined as composed by many identical interacting subsystems. Here it is shown how the dynamics of relaxation toward equilibrium of a thermodynamic system is closely related to the symmetry group of the Hamiltonian of the subsystems of which it is composed. The transitions between states driven by the interactions between identical subsystems correspond to elements of the root system associated to the symmetry group of their Hamiltonian. This imposes constraints on the relaxation dynamics of the complete thermodynamic system, which allow formulating its evolution toward equilibrium as a system of linear differential equations in which the variables are the thermodynamic forces of the system. The trajectory of a thermodynamic system in the space of thermodynamic forces corresponds to the negative gradient of a potential function, which depends on the symmetry group of the Hamiltonian of the individual interacting subsystems.

Equations

Onsager Reciprocity

Entropy Production

Theorem

Time

Författare

Sergio Velasco

Chalmers, Biologi och bioteknik, Systembiologi

Physical Review E

2470-0045 (ISSN)

Vol. 95 6

Ämneskategorier

Fysik

DOI

10.1103/PhysRevE.95.062108

Mer information

Skapat

2017-10-07