Optical bandgap engineering in nonlinear silicon nitride waveguides
Artikel i vetenskaplig tidskrift, 2017

Silicon nitride is a well-established material for photonic devices and integrated circuits. It displays a broad transparency window spanning from the visible to the mid-IR and waveguides can be manufactured with low losses. An absence of nonlinear multi-photon absorption in the erbium lightwave communications band has enabled various nonlinear optic applications in the past decade. Silicon nitride is a dielectric material whose optical and mechanical properties strongly depend on the deposition conditions. In particular, the optical bandgap can be modified with the gas flow ratio during low-pressure chemical vapor deposition (LPCVD). Here we show that this parameter can be controlled in a highly reproducible manner, providing an approach to synthesize the nonlinear Kerr coefficient of the material. This holistic empirical study provides relevant guidelines to optimize the properties of LPCVD silicon nitride waveguides for nonlinear optics applications that rely on the Kerr effect.

Deposition

Resonators

Frequency Combs

Microresonator

2-Photon Absorption

Wavelength

Rich Nitride

Conversion

Photonics

Supercontinuum Generation

CMOS-Compatible Platform

Författare

Clemens Krückel

Chalmers, Mikroteknologi och nanovetenskap (MC2), Fotonik

Attila Fülöp

Chalmers, Mikroteknologi och nanovetenskap (MC2), Fotonik

Zhichao Ye

Chalmers, Mikroteknologi och nanovetenskap (MC2), Fotonik

Peter Andrekson

Chalmers, Mikroteknologi och nanovetenskap (MC2), Fotonik

Victor Torres Company

Chalmers, Mikroteknologi och nanovetenskap (MC2), Fotonik

Optics Express

1094-4087 (ISSN)

Vol. 25 15370-15380

Ämneskategorier

Atom- och molekylfysik och optik

DOI

10.1364/OE.25.015370