Nonclassical Spectral Asymptotics and Dixmier Traces: from Circles to Contact Manifolds
Artikel i vetenskaplig tidskrift, 2017
We consider the spectral behavior and noncommutative geometry of commutators [P, f], where P is an operator of order 0 with geometric origin and f a multiplication operator by a function. When f is Holder continuous, the spectral asymptotics is governed by singularities. We study precise spectral asymptotics through the computation of Dixmier traces; such computations have only been considered in less singular settings. Even though a Weyl law fails for these operators, and no pseudodifferential calculus is available, variations of Connes' residue trace theorem and related integral formulas continue to hold. On the circle, a large class of nonmeasurable Hankel operators is obtained from Holder continuous functions f, displaying a wide range of nonclassical spectral asymptotics beyond the Weyl law. The results extend from Riemannian manifolds to contact manifolds and noncommutative tori.
space
formulas
mappings
cr
geometry
heisenberg manifolds
connes-dixmier
lipschitz
integral-operators
hankel-operators