Useful Physical Images and Algorithms for Vector Dyadic Green's Functions [Wireless Corner]
Artikel i vetenskaplig tidskrift, 2017

This article gathers useful, simple algorithms and their physical interpretations for field solutions from incremental sources in three-dimensional (3-D) spatial, two-dimensional (2-D) spectral, and one-dimensional (1-D) spectral domains. The interpretations of the 1-D spectral Green's functions are visualized in space as fields from current sheets, tubes, and shells for the planar, circular cylindrical, and spherical cases, respectively. A joint algorithm is presented for solving the multilayer case for all three cases. Similarly, field problems involving cylindrical objects or bodies of revolution (BOR) are structured into spectrums of 2-D spatial solutions from line sources and ring sources, respectively. The formulations and physical images are pedagogical and open up for new creative ways of teaching electromagnetic (EM) field theory as well as structuring numerical algorithms for field solutions that take known symmetries into account. It is also shown that the 3-D spatial Green's functions can be approximated to improve physical interpretation by omitting higher-order 1/r terms when r >2?.

Författare

Per-Simon Kildal

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

Zvonimir Sipus

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

Jian Yang

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

Rob Maaskant

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

IEEE Antennas and Propagation Magazine

1045-9243 (ISSN)

Vol. 59 4 106-116 8002711

Ämneskategorier (SSIF 2011)

Matematik

Matematisk analys

Fundament

Grundläggande vetenskaper

DOI

10.1109/MAP.2017.2706665

Mer information

Senast uppdaterat

2022-04-05