Grain boundary mediated hydriding phase transformations in individual polycrystalline metal nanoparticles
Artikel i vetenskaplig tidskrift, 2017

Grain boundaries separate crystallites in solids and influence material properties, as widely documented for bulk materials. In nanomaterials, however, investigations of grain boundaries are very challenging and just beginning. Here, we report the systematic mapping of the role of grain boundaries in the hydrogenation phase transformation in individual Pd nanoparticles. Employing multichannel single-particle plasmonic nanospectroscopy, we observe large variation in particle-specific hydride-formation pressure, which is absent in hydride decomposition. Transmission Kikuchi diffraction suggests direct correlation between length and type of grain boundaries and hydride-formation pressure. This correlation is consistent with tensile lattice strain induced by hydrogen localized near grain boundaries as the dominant factor controlling the phase transition during hydrogen absorption. In contrast, such correlation is absent for hydride decomposition, suggesting a different phase-transition pathway. In a wider context, our experimental setup represents a powerful platform to unravel microstructure-function correlations at the individual-nanoparticle level.

Författare

Svetlana Alekseeva

Chalmers, Fysik, Kemisk fysik

A. B. D. Fanta

Danmarks Tekniske Universitet (DTU)

Beniamino Iandolo

Danmarks Tekniske Universitet (DTU)

Tomasz Antosiewicz

Chalmers, Fysik, Bionanofotonik

Ferry Nugroho

Chalmers, Fysik, Kemisk fysik

Jakob B. Wagner

Danmarks Tekniske Universitet (DTU)

A. Burrows

Danmarks Tekniske Universitet (DTU)

Vladimir Zhdanov

Chalmers, Fysik, Kemisk fysik

Christoph Langhammer

Chalmers, Fysik, Kemisk fysik

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 8 1 1084

Styrkeområden

Nanovetenskap och nanoteknik

Ämneskategorier

Den kondenserade materiens fysik

DOI

10.1038/s41467-017-00879-9

PubMed

29057929

Mer information

Senast uppdaterat

2018-02-28