Learning Traversability from Point Clouds in Challenging Scenarios
Artikel i vetenskaplig tidskrift, 2017

This paper aims at evaluating the capabilities to detect road traversability in urban and extra-urban scenarios of support vector machine-based classifiers that use local descriptors extracted from point cloud data. The evaluation of the proposed classifiers is carried out by using four different kernels and comparing five point descriptors obtained from geometric and appearance-based features. A comparison among the performance of descriptors individually has demonstrated that the normal vector-based descriptor achieves an accuracy of 88%, outperforming by about 6%–15% all the other considered ones. To further improve the interpretation capabilities, the space of features is augmented by merging the components of each point descriptor, reaching 92% classification accuracy. A set of test scenarios have been acquired during an extensive experimental campaign using an all-terrain vehicle. Tests on real data show high classification performance for road scenarios and rural environments; the generality of the method makes it applicable for different types of mobile robots including, but not limited to, autonomous vehicles.

Författare

Mauro Bellone

Chalmers, Tillämpad mekanik, Fordonsteknik och autonoma system

Giulio Reina

Luca Caltagirone

Chalmers, Tillämpad mekanik, Fordonsteknik och autonoma system

Mattias Wahde

Chalmers, Tillämpad mekanik, Fordonsteknik och autonoma system

IEEE Transactions on Intelligent Transportation Systems

1524-9050 (ISSN)

Vol. 4 1

Styrkeområden

Transport

Ämneskategorier

Robotteknik och automation

Mer information

Skapat

2017-11-17