Modeling of kinematic hardening at large biaxial deformations in pearlitic rail steel
Artikel i vetenskaplig tidskrift, 2018

Using an Axial-Torsion testing machine, pearlitic R260 steel specimens are twisted until fracture under different axial loads. A well established framework for finite elastoplasticity with kinematic hardening is used to model the deformation of the specimens. In particular, we evaluate the ability of different kinematic hardening laws to predict the observed biaxial load versus displacement response. It is found that the combination of Armstrong-Frederick dynamic recovery and Burlet-Cailletaud radial evanescence saturation is efficient even for the large strains achieved in this study. The results are less conclusive on the appropriateness of replacing the Armstrong-Frederick with an Ohno-Wang type of kinematic hardening law.

1995

1986

Axial-Torsion

Multiaxial

carbon-steel

mechanical-properties

critical state

Pearlitic steel

FORMATION (NANOSPD6)6th International Conference on Nanomaterials by Severe Plastic

Biaxial

cyclic plasticity

high-pressure torsion

dynamic recovery

p237

international journal of plasticity

p149

Finite strains

aboche jl

crostructure and processing

lobelle p

p295

finite-element-analysis

international journal of plasticity

v2

plastic-deformation

v11

v445

Mechanics

large ratcheting strains

behavior

Författare

Knut Andreas Meyer

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Magnus Ekh

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Johan Ahlström

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

International Journal of Solids and Structures

0020-7683 (ISSN)

Vol. 130 122-132

Ämneskategorier

Maskinteknik

DOI

10.1016/j.ijsolstr.2017.10.007