Negative discrete spectrum of perturbed multivortex Aharonov-Bohm Hamiltonians.
Artikel i vetenskaplig tidskrift, 2004

The diamagnetic inequality is established for the Schrödinger operator H 0 (d) in L 2 (ℝ d ), d = 2,3, describing a particle moving in a magnetic field generated by finitely or infinitely many Aharonov-Bohm solenoids located at the points of a discrete set in ℝ 2 , e.g., a lattice. This fact is used to prove the Lieb-Thirring inequality as well as CLR-type eigenvalue estimates for the perturbed Schrödinger operator H 0(d) - V, using new Hardy type inequalities. Large coupling constant eigenvalue asymptotic formulas for the perturbed operators are also proved.

Författare

Grigori Rozenblioum

Göteborgs universitet

Chalmers, Institutionen för matematik

Michael Melgaard

Chalmers, Institutionen för matematik

Göteborgs universitet

Grigori Rozenblioum

Chalmers

Annales Henri Poincare

1424-0637 (ISSN) 1424-0661 (eISSN)

Vol. 5 5 979--1012-

Ämneskategorier

Matematisk analys

DOI

10.1007/s00023-004-0187-3

Mer information

Senast uppdaterat

2018-09-10