Modeling mass transport with microkinetics in monolithic NOx storage and reduction catalyst
Artikel i vetenskaplig tidskrift, 2007

A 2D axisymetric model of a NOx storage and reduction catalyst monolith channel combining mass transport with a detailed kinetic model was created to evaluate the importance of mass transport in a Pt/BaO/Al2O3 washcoat. Results show that there are small radial gradients in stored species concentration early during transients. The Sherwood number calculated during the transient storage phase will not be constant in time nor space as a film correlation would predict, but instead shows a region of higher Sherwood number propagating through the channel as the storage reaches completion. It is concluded that incorporating detailed mass transport provides a better spatially resolved picture of the dynamics of the proposed reaction mechanism and minimises the risk of arriving at false intrinsic kinetics during the development of a microkinetic model.

washcoat

2D

Transient

Pt/BaOAl2O3

modeling

microkinetic

NSR

Författare

Björn Wickman

Chalmers, Teknisk fysik, Kemisk fysik

Andreas Lundström

Chalmers, Kemi- och bioteknik, Kemisk reaktionsteknik

Jonas Sjöblom

Chalmers, Kemi- och bioteknik, Kemisk reaktionsteknik

Derek Creaser

Chalmers, Kemi- och bioteknik, Kemisk reaktionsteknik

Topics in Catalysis

1022-5528 (ISSN) 1572-9028 (eISSN)

Vol. 42-43 123-127

Ämneskategorier

Kemiska processer

DOI

10.1007/s11244-007-0164-4