Simulation of dynamic interaction between train and railway turnout
Artikel i vetenskaplig tidskrift, 2006

Dynamic train–track interaction is more complex in railway turnouts (switches and crossings) than that in ordinary tangent or curved tracks. Multiple contacts between wheel and rail are common, and severe impact loads with broad frequency contents are induced, when nominal wheel–rail contact conditions are disturbed because of the continuous variation in rail profiles and the discontinuities in the crossing panel. The absence of transition curves at the entry and exit of the turnout, and the cant deficiency, leads to large wheel–rail contact forces and passenger discomfort when the train is switching into the turnout track. Two alternative multibody system (MBS) models of dynamic interaction between train and a standard turnout design are developed. The first model is derived using a commercial MBS software. The second model is based on a multibody dynamics formulation, which may account for the structural flexibility of train and track components (based on finite element models and coordinate reduction methods). The variation in rail profile is accounted for by sampling the cross-section of each rail at several positions along the turnout. Contact between the back of the wheel flange and the check rail, when the wheelset is steered through the crossing, is considered. Good agreement in results from the two models is observed when the track model is taken as rigid.

Wheel–rail contact geometry

Multibody dynamics

Dynamic train–turnout interaction

Switches and crossings

Contact forces


Elias Kassa


Clas Andersson


Jens Nielsen


Vehicle System Dynamics

0042-3114 (ISSN) 1744-5159 (eISSN)

Vol. 44 3 247-258





Mer information