Influence of spin creepage and contact angle on curve squeal: A numerical approach
Artikel i vetenskaplig tidskrift, 2018

Curve squeal is a loud tonal sound that may arise when a railway vehicle negotiates a tight curve. Due to the nonlinear nature of squeal, time-domain models provide a higher degree of accuracy in comparison to frequency-domain models and also enable the determination of squeal amplitudes. In the present paper, a previously developed engineering time-domain model for curve squeal is extended to include the effects of the contact angle and spin creepage. The extensions enable the evaluation of more realistic squeal cases with the computationally efficient model. The model validation against Kalker's variational contact model shows good agreement between the models. Results of studies on the influence of spin creepage and contact angle show that the contact angle has a significant influence on the vertical-lateral dynamics coupling and, therefore, influences both squeal amplitude and frequency. Spin creepage mainly influences processes in the contact, therefore influencing the tangential contact force amplitude. In the combined spin-contact angle study the spin creepage value is kinematically related to the contact angle value. Results indicate that the influence of the contact angle is dominant over the influence of spin creepage. In general, results indicate that the most crucial factors in squeal are those that influence the dynamics coupling: the contact angle, wheel/rail contact positions and friction.

Dynamics-coupling mechanism

Time domain

Tangential point-contact

Contact model

Curve squeal

Wheel/rail interaction

Författare

Ivan Zenzerovic

Chalmers, Arkitektur och samhällsbyggnadsteknik, Teknisk akustik

Wolfgang Kropp

Chalmers, Arkitektur och samhällsbyggnadsteknik, Teknisk akustik

Astrid Pieringer

Chalmers, Arkitektur och samhällsbyggnadsteknik, Teknisk akustik

Journal of Sound and Vibration

0022-460X (ISSN) 1095-8568 (eISSN)

Vol. 419 268-280

Ämneskategorier (SSIF 2011)

Teknisk mekanik

Farkostteknik

Strömningsmekanik och akustik

DOI

10.1016/j.jsv.2018.01.004

Mer information

Senast uppdaterat

2018-04-20