Understanding the Interactions between Vibrational Modes and Excited State Relaxation in Y3-xCexAl5O12: Design Principles for Phosphors Based on 5 d-4 f Transitions
Artikel i vetenskaplig tidskrift, 2018

The oxide garnet Y 3 Al 5 O 12 (YAG), when a few percent of the activator ions Ce 3+ substitutes for Y 3+ , is a luminescent material widely used in phosphor-converted white lighting. However, fundamental questions surrounding the defect chemistry and luminescent per formance of this material remain, especially in regard to the nature and role of vibrational dynamics. Here, we provide a complete phonon assignment of YAG and establish the general spectral trends upon variation of the Ce 3+ dopant concentration and temperature, which are shown to correlate with the macroscopic luminescence properties of Y 3-x Ce x Al 5 O 12 . Increasing the Ce 3+ concentration and/or temperature leads to a red-shift of the emitted light, as a result of increased crystal-field splitting due to a larger tetragonal distortion of the CeO 8 moieties. Decreasing the Ce 3+ concentration or cosubstitution of smaller and/or lighter atoms on the Y sites creates the potential to suppress thermal quenching of luminescence because the frequencies of phonon modes important for nonradiative relaxation mechanisms are upward-shifted and hence less readily activated. It follows that design principles for finding new Ce 3+ -doped oxide phosphors emitting at longer wavelengths require tetragonally distorted environments around the CeO 8 moieties and a sufficiently rigid host structure and/or low activator-ion concentration to avoid thermal quenching of luminescence.

Författare

Yuan-Chih Lin

Oorganisk miljökemi 2

Paul Erhart

Universita degli Studi di Verona

M. Bettinelli

University of California

Nathan C. George

ISIS Facility

University of California

S. F. Parker

Universita degli Studi di Verona

Maths Karlsson

Oorganisk miljökemi 2

Chemistry of Materials

0897-4756 (ISSN) 1520-5002 (eISSN)

Vol. 30 6 1865-1877

Ämneskategorier

Oorganisk kemi

Atom- och molekylfysik och optik

Den kondenserade materiens fysik

DOI

10.1021/acs.chemmater.7b04348

Mer information

Senast uppdaterat

2018-04-19