Structure-function relationship during CO2 methanation over Rh/Al2O3 and Rh/SiO2 catalysts at atmospheric pressure conditions
Artikel i vetenskaplig tidskrift, 2018

The effect of support material and chemical state of Rh for Rh/Al2O3 and Rh/SiO2 model catalysts during CO2 hydrogenation were studied by a combined array of in situ characterisation techniques including diffuse reflectance infrared Fourier transform spectroscopy, energy-dispersive X-ray absorption spectroscopy and high-energy X-ray diffraction at 250-350 °C and atmospheric pressure. The CO2 methanation proceeds via intermediate formation of adsorbed CO species on metallic Rh likely followed by their hydrogenation to methane. Linearly-bonded CO species is suggested to be a more active precursor in the hydrogenation compared to the bridge-bonded species, which seems to relate to particle size effects: for larger particles mainly the formation of inactive bridge-bonded CO species takes place. Further, analysis of the chemical state of Rh during reaction conditions reveal a minor formation of RhOx from dissociation of CO2 , which is a consequence of the increased activity observed over Rh/Al2O3 catalyst.

Författare

Natalia Mihaela Martin

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Teknisk ytkemi

Felix Hemmingsson

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Per-Anders Carlsson Group

Xueting Wang

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Teknisk ytkemi

Lindsay Merte

Chalmers, Fysik, Kemisk fysik

Uta Hejral

Lunds universitet

Gustafson Johan

Lunds universitet

Magnus Skoglundh

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Polymerteknologi

Debora Motta Meira

European Synchrotron Radiation Facility (ESRF)

Ann-Christin Dippel

Deutsches Elektronen-Synchrotron (DESY)

Olof Gutowski

Deutsches Elektronen-Synchrotron (DESY)

Matthias Bauer

Universität Paderborn

Per-Anders Carlsson

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Per-Anders Carlsson Group

Catalysis Science and Technology

2044-4753 (ISSN) 2044-4761 (eISSN)

Vol. 8 10 2686-2696

Tidsupplösta in situ metoder för design av katalytiska säten för hållbar kemi

Vetenskapsrådet (VR), 2013-01-01 -- 2016-12-31.

Drivkrafter

Hållbar utveckling

Styrkeområden

Nanovetenskap och nanoteknik

Transport

Energi

Materialvetenskap

Ämneskategorier

Materialkemi

Den kondenserade materiens fysik

DOI

10.1039/c8cy00516h

Mer information

Senast uppdaterat

2018-10-26