Noise and IF Gain Bandwidth of a Balanced Waveguide NbN/GaN Hot Electron Bolometer Mixer Operating at 1.3 THz
Artikel i vetenskaplig tidskrift, 2018
of a waveguide balanced phonon-cooled NbN hot electron
bolometer (HEB) mixer on aGaNbuffer-layer operating at approximately
1.3 terahertz (THz). The measured uncorrected double
sideband noise temperature was as low as 750 K at 1 GHz
intermediate frequency (IF) and 900 K at 4 GHz IF, respectively,
and suggests a noise bandwidth of 7 GHz. Moreover, the IF gain
bandwidth of the HEB itself was deduced from a mixing experiment
with a second monochromatic THz signal source and has
shown a 3 dB roll-off at 5.5 GHz. The contribution of the HEB
mixer on the overall receiver noise temperature was determined
to be in the order of 300 K or 5 hf/k considering losses in the
RF transmission path and the waveguide components as well as
accounting for the receiver conversion loss, which was deduced
from the U-factor method. The achieved performance sets a new
benchmark for futureTHz instruments and emphasizes the technological
readiness of waveguide-based NbN HEB mixers employing
a GaN buffer-layer featuring significantly improved IF bandwidth
without compromising on the receiver’s noise temperature.
Hot electron bolometer (HEB) mixer
NbN thin film
terahertz (THz) receiver
Författare
Sascha Krause
Chalmers, Rymd-, geo- och miljövetenskap, Onsala rymdobservatorium
Denis Meledin
Chalmers, Rymd-, geo- och miljövetenskap, Onsala rymdobservatorium
Vincent Desmaris
Chalmers, Rymd-, geo- och miljövetenskap, Onsala rymdobservatorium
Alexey Pavolotskiy
Chalmers, Rymd-, geo- och miljövetenskap, Onsala rymdobservatorium
Hawal Marouf Rashid
Chalmers, Rymd-, geo- och miljövetenskap, Avancerad mottagarutveckling
Victor Belitsky
Chalmers, Rymd-, geo- och miljövetenskap, Onsala rymdobservatorium
IEEE Transactions on Terahertz Science and Technology
2156-342X (ISSN) 21563446 (eISSN)
Vol. 8 3 365-371Infrastruktur
Nanotekniklaboratoriet
Ämneskategorier
Annan elektroteknik och elektronik
Den kondenserade materiens fysik
DOI
10.1109/TTHZ.2018.2824027