Propagation of chaos, wasserstein gradient flows and toric Kähler-Einstein metrics
Artikel i vetenskaplig tidskrift, 2018

Motivated by a probabilistic approach to Kähler-Einstein metrics we consider a general nonequilibrium statistical mechanics model in Euclidean space consisting of the stochastic gradient flow of a given (possibly singular) quasiconvex N-particle interaction energy. We show that a deterministic "macroscopic" evolution equation emerges in the large N-limit of many particles. This is a strengthening of previous results which required a uniform two-sided bound on the Hessian of the interaction energy. The proof uses the theory of weak gradient flows on the Wasserstein space. Applied to the setting of permanental point processes at "negative temperature", the corresponding limiting evolution equation yields a driftdiffusion equation, coupled to the Monge-Ampère operator, whose static solutions correspond to toric Kähler-Einstein metrics. This drift-diffusion equation is the gradient flow on the Wasserstein space of probability measures of the K-energy functional in Kähler geometry and it can be seen as a fully nonlinear version of various extensively studied dissipative evolution equations and conservation laws, including the Keller-Segel equation and Burger's equation. In a companion paper, applications to singular pair interactions in one dimension are given.

Statistical mechanics

Propagation of chaos

Langvin equation

Kähler-Einstein metrics

Författare

Robert Berman

Chalmers, Matematiska vetenskaper, Algebra och geometri

Magnus Önnheim

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Algebra och geometri

Analysis and PDE

2157-5045 (ISSN) 1948-206X (eISSN)

Vol. 11 1343-1380

Ämneskategorier

Beräkningsmatematik

Annan fysik

Matematisk analys

DOI

10.2140/apde.2018.11.1343