Liquid Norbornadiene Photoswitches for Solar Energy Storage
Artikel i vetenskaplig tidskrift, 2018

Due to high global energy demands, there is a great need for development of technologies for exploiting and storing solar energy. Closed cycle systems for storage of solar energy have been suggested, based on absorption of photons in photoresponsive molecules, followed by on-demand release of thermal energy. These materials are called solar thermal fuels (STFs) or molecular solar thermal (MOST) energy storage systems. To achieve high energy densities, ideal MOST systems are required either in solid or liquid forms. In the case of the latter, neat high performing liquid materials have not been demonstrated to date. Here is presented a set of neat liquid norbornadiene derivatives for MOST applications and their characterization in toluene solutions and neat samples. Their synthesis is in most cases based on solvent-free Diels-Alder reactions, which easily and efficiently afford a range of compounds. The shear viscosity of the obtained molecules is close to that of colza oil, and they can absorb up to 10% of the solar spectrum with a measured energy storage density of up to 577 kJ/kg corresponding to 152 kJ mol–1(calculated 100 kJ mol–1). These findings pave the way towards implementation of liquid norbornadienes in closed cycle energy storage technologies.

solar energy storage

photoswitches

solar thermal

molecular materials

Författare

Ambra Dreos

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Polymerteknologi

Zhihang Wang

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Polymerteknologi

Jonas Udmark

Köbenhavns Universitet

Anna Ström

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Paul Erhart

Chalmers, Fysik, Material- och ytteori

Karl Börjesson

Göteborgs universitet

Mogens Brøndsted Nielsen

Köbenhavns Universitet

Kasper Moth-Poulsen

Kasper Moth-Poulsen Group

Advanced Energy Materials

1614-6832 (ISSN) 1614-6840 (eISSN)

Vol. 8 1703401

Ämneskategorier

Energiteknik

Teoretisk kemi

Energisystem

DOI

10.1002/aenm.201703401