Superposition with Datatypes and Codatatypes
Paper i proceeding, 2018

The absence of a finite axiomatization of the first-order theory of datatypes and codatatypes represents a challenge for automatic theorem provers. We propose two approaches to reason by saturation in this theory: one is a conservative theory extension with a finite number of axioms; the other is an extension of the superposition calculus, in conjunction with axioms. Both techniques are refutationally complete with respect to nonstandard models of datatypes and nonbranching codatatypes. They take into account the acyclicity of datatype values and the existence and uniqueness of cyclic codatatype values. We implemented them in the first-order prover Vampire and compare them experimentally.

Författare

Jasmin Christian Blanchette

Max Planck-institutet

VU University Amsterdam

Nicolas Peltier

Université Grenoble Alpes

Simon Robillard

Chalmers, Data- och informationsteknik, Formella metoder

Lecture Notes in Computer Science

0302-9743 (ISSN)

Vol. 10900 370-387

9th International Joint Conference on Automated Reasoning, IJCAR 2018 Held as Part of the Federated Logic Conference, FloC 2018
Oxford, United Kingdom,

Ämneskategorier

Algebra och logik

Filosofi

Matematisk analys

DOI

10.1007/978-3-319-94205-6_25

Mer information

Senast uppdaterat

2018-10-11