A Cost-effective D-band Multi-layer Rectangular Waveguide Transmission Line Based on Glide-Symmetric EBG Structure
Paper i proceeding, 2018

An air-filled multi-layer waveguide (MLW) transmission line with a novel architecture for high-frequency applications is presented. A rectangular waveguide transmission line is formed by stacking several thin metal layers without any electrical and galvanic contact requirement among the layers. A glide-symmetric electromagnetic band gap (EBG) structure is used to package the layers and eliminate any possible leakage. A back-to-back straight line with two right-angle bends is manufactured by use of chemical metal etching, a low-cost and high-precision fabrication technique. The fabricated prototype shows high performance with low measured transmission loss of 0.17 dB/cm at D-band (110 to 170 GHz). The proposed multilayer waveguide (MLW) has the great advantages of low-cost and easy fabrication with a low transmission loss, even for frequencies beyond 100 GHz. The proposed concept could be a good approach to design high-performance passive waveguide components, and also active and passive components integration in mass production at the millimeter wave frequency band.

multi-layer waveguide (MLW)

waveguide

Electromagnetic band gap (EBG)

millimeter wave

Författare

Abbas Vosoogh

Chalmers, Elektroteknik, Kommunikationssystem, informationsteori och antenner, Antennsystem

Zhongxia Simon He

Chalmers, Mikroteknologi och nanovetenskap (MC2), Mikrovågselektronik

Herbert Zirath

Chalmers, Mikroteknologi och nanovetenskap (MC2), Mikrovågselektronik

12th European Conference on Antennas and Propagation, EuCAP 2018.
London, ,

Ämneskategorier

Textil-, gummi- och polymermaterial

Annan materialteknik

Annan elektroteknik och elektronik

Mer information

Skapat

2018-08-16