Influence of atomic site-specific strain on catalytic activity of supported nanoparticles
Artikel i vetenskaplig tidskrift, 2018

Heterogeneous catalysis is an enabling technology that utilises transition metal nanoparticles (NPs) supported on oxides to promote chemical reactions. Structural mismatch at the
NP–support interface generates lattice strain that could affect catalytic properties. However, detailed knowledge about strain in supported NPs remains elusive. We experimentally
measure the strain at interfaces, surfaces and defects in Pt NPs supported on alumina and ceria with atomic resolution using high-precision scanning transmission electron microscopy.
The largest strains are observed at the interfaces and are predominantly compressive. Atomic models of Pt NPs with experimentally measured strain distributions are used for firstprinciples
kinetic Monte Carlo simulations of the CO oxidation reaction. The presence of only a fraction of strained surface atoms is found to affect the turnover frequency. These results
provide a quantitative understanding of the relationship between strain and catalytic function and demonstrate that strain engineering can potentially be used for catalyst design.

Transmission Electron Microscopy

Heterogeneous Catalysis

Supported Pt Nanoparticles

Density Functional Theory

Kinetic Monte Carlo

CO oxidation


Torben Nilsson Pingel

Kompetenscentrum katalys

Chalmers, Fysik, Eva Olsson Group

Mikkel Jørgensen

Kompetenscentrum katalys

Chalmers, Fysik, Kemisk fysik

Andrew Yankovich

Chalmers, Fysik, Eva Olsson Group

Henrik Grönbeck

Chalmers, Fysik, Kemisk fysik

Kompetenscentrum katalys

Eva Olsson

Chalmers, Fysik, Eva Olsson Group

Kompetenscentrum katalys

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 9 1 2722

Länk mellan katalytisk aktivitet och kvantmekaniska beräkningar

Vetenskapsrådet (VR) (2016-05234), 2017-01-01 -- 2020-12-31.

Enabling Science and Technology through European Electron Microscopy (ESTEEM 2)

Europeiska kommissionen (EU) (EC/FP7/312483), 2012-10-01 -- 2016-09-30.


Nanovetenskap och nanoteknik



Teoretisk kemi

Den kondenserade materiens fysik





Mer information

Senast uppdaterat