A study on correlation of pedestrian head injuries with physical parameters using in-depth traffic accident data and mathematical models
Artikel i vetenskaplig tidskrift, 2018

The objective of the present study is to predict brain injuries and injury severities from realworld traffic accidents via in-depth investigation of head impact responses, injuries and brain injury tolerances. Firstly, a total of 43 passenger car versus adult pedestrian accidents were selected from two databases of the In-depth Investigation of Vehicle Accidents in Changsha of China (IVAC) and the German In-Depth Accident Study (GIDAS). In a previous study the 43 accidents were reconstructed by using the multi-body system (MBS) model (Peng et al., 2013a) for determining the initial conditions of the head-windscreen impact in each accident. Then, a study of the head injuries and injury mechanisms is carried out via 43 finite element (FE) modelings of a head strike to a windscreen, in which the boundary and loading conditions are defined according to results from accident reconstructions, including impact velocity, position and orientation of the head FE model. The brain dynamic responses were calculated for the physical parameters of the coup/countercoup pressure, von Mises and maximum shear stresses at the cerebrum, the callosum, the cerebellum and the brain stem. In addition, head injury criteria, including the cumulative strain damage measure (CSDM) (with tissue level strain threshold 0.20) and the dilatational damage measure (DDM), were developed in order to predict the diffuse axonal injury (DAI) and contusions, respectively. The correlations between calculated parameters and brain injuries were determined via comparing the simulation results with the observed injuries in accident data. The regression models were developed for predicting the injury risks in terms of the brain dynamic responses and the calculated CSDM and DDM values. The results indicate that the predicted values of 50% probability causing head injuries in the Abbreviated Injury Scale (AIS) 2+ correspond to coup pressure 167 kPa, countercoup pressure −117 kPa, von Mises 16.3 kPa and shear stress 7.9 kPa respectively, and causing AIS 3+ head injuries were 227 kPa, −169 kPa, 24.2 kPa and 12.2 kPa respectively. The results also suggest that a 50% probability of contusions corresponds to CSDM value of 48% at strain levels of 0.2, and the 50% probability of contusions corresponds to a DDM value of 6.7%.

Human head FE model

Brain injury mechanism

Reconstruction

Pedestrian safety

Traffic accident

Tolerance threshold

Författare

Jing Huang

Hunan University

Yong Peng

Central South University

Jikuang Yang

Hunan University

Tillämpad mekanik

Dietmar Otte

Medizinische Hochschule Hannover (MHH)

Bingyu Wang

Xiamen University of Technology

Accident Analysis and Prevention

0001-4575 (ISSN)

Vol. 119 91-103

Styrkeområden

Transport

Ämneskategorier

Transportteknik och logistik

Miljömedicin och yrkesmedicin

DOI

10.1016/j.aap.2018.07.012

PubMed

30015170

Mer information

Senast uppdaterat

2018-10-29