Product set phenomena for measured groups
Artikel i vetenskaplig tidskrift, 2018

We strengthen and extend in this paper some recent results by Di Nasso, Goldbring, Jin, Leth, Lupini and Mahlburg on piecewise syndeticity of product sets in countable amenable groups to general countable measured groups. We also address several fundamental differences between the behavior of products of 'large' sets in Liouville and non-Liouville measured groups. As a (very) special case of our main results, we show that if G is a free group of finite rank, and A and B are 'spherically large' subsets of G, then there exists a finite set F subset of G such that AFB is thick. The position of the set F is curious, but seems to be necessary; in fact, we can produce left thick sets A, B subset of G such that B is 'spherically large', but AB is not piecewise syndetic. On the other hand, if A is spherically large, then AA(-1) is always piecewise syndetic and piecewise left syndetic. However, contrary to what happens for amenable groups, AA(-1) may fail to be syndetic. The same phenomena occur for many other (even amenable, but non-Liouville) measured groups. Our proofs are based on some ergodic-theoretical results concerning stationary actions which should be of independent interest.

Författare

Michael Björklund

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Ergodic Theory and Dynamical Systems

0143-3857 (ISSN) 1469-4417 (eISSN)

Vol. 38 2913-2941

Ämneskategorier

Algebra och logik

Geometri

Matematisk analys

DOI

10.1017/etds.2017.21

Mer information

Senast uppdaterat

2018-12-12