Direct images of semi-meromorphic currents
Artikel i vetenskaplig tidskrift, 2018

We introduce a calculus for the class ASM(X) of direct images of semi-meromorphic currents on a reduded analytic space X, that extends the classical calculus due to Coleff, Herrera and Passare. Our main result is that each element in this class acts as a kind of multiplication on the sheaf PMX of pseudomeromorphic currents on X. We also prove that ASM(X) as well as PMX and certain subsheaves are closed under the action of holomorphic differential operators and interior multiplication by holomorphic vector fields.

Pseudomeromorphic current

Semi-meromorphic current

Residue current

Analytic space

Författare

Mats Andersson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Algebra och geometri

Elizabeth Wulcan

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Algebra och geometri

Annales de lInstitut Fourier

0373-0956 (ISSN)

Vol. 68 2 875-890

Ämneskategorier (SSIF 2011)

Algebra och logik

Geometri

Matematisk analys

DOI

10.5802/aif.3180

Mer information

Senast uppdaterat

2024-08-14