Trajectory probability hypothesis density filter
Paper i proceeding, 2018

This paper presents the probability hypothesis density (PHD) filter for sets of trajectories: the trajectory probability density (TPHD) filter. The TPHD filter is capable of estimating trajectories in a principled way without requiring to evaluate all measurement-to-target association hypotheses. The TPHD filter is based on recursively obtaining the best Poisson approximation to the multitrajectory filtering density in the sense of minimising the Kullback-Leibler divergence. We also propose a Gaussian mixture implementation of the TPHD recursion. Finally, we include simulation results to show the performance of the proposed algorithm.

Random finite sets

PHD filter

sets of trajectories

multitarget tracking

Författare

Angel Garcia

University of Liverpool

Lennart Svensson

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik, Signalbehandling

2018 21st International Conference on Information Fusion, FUSION 2018

1430-1437 8455270

21st International Conference on Information Fusion, FUSION 2018
Cambridge, United Kingdom,

Ämneskategorier

Sannolikhetsteori och statistik

Reglerteknik

Signalbehandling

DOI

10.23919/ICIF.2018.8455270

Mer information

Senast uppdaterat

2018-12-28