Detecting Selective Protein Binding Inside Plasmonic Nanopores: Toward a Mimic of the Nuclear Pore Complex
Artikel i vetenskaplig tidskrift, 2018

Biosensors based on plasmonic nanostructures offer label-free and real-time monitoring of biomolecular interactions. However, so do many other surface sensitive techniques with equal or better resolution in terms of surface coverage. Yet, plasmonic nanostructures offer unique possibilities to study effects associated with nanoscale geometry. In this work we use plasmonic nanopores with double gold films and detect binding of proteins inside them. By thiol and trietoxysilane chemistry, receptors are selectively positioned on the silicon nitride interior walls. Larger (similar to 150 nm) nanopores are used detect binding of averaged sized proteins (similar to 60 kg/mol) with high signal to noise (>100). Further, we fabricate pores that approach the size of the nuclear pore complex (diameter down to 50 nm) and graft disordered phenylalanine-glycine nucleoporin domains to the walls, followed by titration of karyopherin beta 1 transport receptors. The interactions are shown to occur with similar affinity as determined by conventional surface plasmon resonance on planar surfaces. Our work illustrates another unique application of plasmonic nanostructures, namely the possibility to mimic the geometry of a biological nanomachine with integrated optical sensing capabilities.



nuclear pore complex




Bita Malekian

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Rafael L. Schoch

Universität Basel

Timothy Robson

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Gustav Ferrand-Drake Del Castillo

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Kunli Xiong

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Gustav Emilsson

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Larisa E. Kapinos

Universität Basel

Roderick Y. H. Lim

Universität Basel

Andreas Dahlin

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Frontiers in Chemistry

2296-2646 (ISSN)

Vol. 6 December 2018 637

Polymerborstar och molekylär transport i nanokanaler

Vetenskapsrådet (VR) (2016-03319), 2017-01-01 -- 2020-12-31.


Biokemi och molekylärbiologi







Mer information

Senast uppdaterat