Reduction of the maximum mass-loss rate of OH/IR stars due to unnoticed binary interaction
Övrig text i vetenskaplig tidskrift, 2019

© 2019, The Author(s), under exclusive licence to Springer Nature Limited. In 1981, the idea of a superwind that ends the life of cool giant stars was proposed 1 . Extreme oxygen-rich giants, OH/IR stars, develop superwinds with the highest mass-loss rates known so far, up to a few 10 −4 solar masses (M ⊙ ) per year 2–12 , informing our understanding of the maximum mass-loss rate achieved during the asymptotic giant branch (AGB) phase. A conundrum arises whereby the observationally determined duration of the superwind phase is too short for these stars to lose enough mass to become white dwarfs 2–4,6,8–10 . Here we report on the detection of spiral structures around two cornerstone extreme OH/IR stars, OH 26.5 + 0.6 and OH 30.1 − 0.7, thereby identifying them as wide binary systems. Hydrodynamic simulations show that the companion’s gravitational attraction creates an equatorial density enhancement mimicking a short, extreme superwind phase, thereby solving the decades-old conundrum. This discovery restricts the maximum mass-loss rate of AGB stars to around the single-scattering radiation pressure limit of a few 10 −5 M ⊙ yr −1 . This has crucial implications for nucleosynthetic yields, planet survival and the wind-driving mechanism.

Författare

L. Decin

University of Leeds

KU Leuven

W. Homan

KU Leuven

Taissa Danilovich

KU Leuven

A. de Koter

Anton Pannekoek Institute for Astronomy

KU Leuven

D. Engels

Universität Hamburg

Lbfm Waters

Netherlands Institute for Space Research (SRON)

Anton Pannekoek Institute for Astronomy

Sebastien Muller

Chalmers, Rymd-, geo- och miljövetenskap, Onsala rymdobservatorium

C. Gielen

KU Leuven

D. A. García-Hernández

Universidad de la Laguna

Instituto de Astrofísica de Canarias

R. J. Stancliffe

University of Hull

University of Birmingham

M. Van De Sande

KU Leuven

G. Molenberghs

KU Leuven

Universiteit Hasselt

F. Kerschbaum

Universität Wien

A. Zijlstra

The University of Hong Kong

University of Manchester

I. El Mellah

KU Leuven

Nature Astronomy

23973366 (eISSN)

Vol. 3 5 408-415

Ämneskategorier

Astronomi, astrofysik och kosmologi

Atom- och molekylfysik och optik

Metallurgi och metalliska material

Infrastruktur

Onsala rymdobservatorium

DOI

10.1038/s41550-019-0703-5

Mer information

Senast uppdaterat

2022-04-06