Towards Oxide Electronics: a Roadmap
Artikel i vetenskaplig tidskrift, 2019

At the end of a rush lasting over half a century, in which CMOS technology has been experiencing a constant and breathtaking increase of device speed and density, Moore’s law is approaching the insurmountable barrier given by the ultimate atomic nature of matter. A major challenge for 21st century scientists is finding novel strategies, concepts and materials for replacing silicon-based CMOS semiconductor technologies and guaranteeing a continued and steady technological progress in next decades. Among the materials classes candidate to contribute to this momentous challenge, oxide films and heterostructures are a particularly appealing hunting ground. The vastity, intended in pure chemical terms, of this class of compounds, the complexity of their correlated behaviour, and the wealth of functional properties they display, has already made these systems the subject of choice, worldwide, of a strongly networked, dynamic and interdisciplinary research community.

Oxide science and technology has been the target of a wide four-year project, named Towards Oxide-Based Electronics (TO-BE), that has been recently running in Europe and has involved as participants several hundred scientists from 29 EU countries. In this review and perspective paper, published as a final deliverable of the TO-BE Action, the opportunities of oxides as future electronic materials for Information and Communication Technologies ICT and Energy are discussed. The paper is organized as a set of contributions, all selected and ordered as individual building blocks of a wider general scheme. After a brief preface by the editors and an introductory contribution, two sections follow. The first is mainly devoted to providing a perspective on the latest theoretical and experimental methods that are employed to investigate oxides and to produce oxide-based films, heterostructures and devices. In the second, all contributions are dedicated to different specific fields of applications of oxide thin films and heterostructures, in sectors as data storage and computing, optics and plasmonics, magnonics, energy conversion and harvesting, and power electronics.

Författare

M. Coll

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)

J. Fontcuberta

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)

M. Althammer

Walther-Meissner-Institut für Tieftemperaturforschung

Technische Universität München

M. Bibes

Thales Group

H. Boschker

Max-Planck-Gesellschaft

A. Calleja

Oxolutia S.L

G. Cheng

University of Science and Technology of China

University of Pittsburgh

Pittsburgh Quantum Institute

M. Cuoco

Universita degli Studi di Salerno

R. Dittmann

Forschungszentrum Jülich

B. Dkhil

Laboratoire Structures, Propriétés et Modélisation des Solides

I. El Baggari

Cornell University

M. Fanciulli

Universita' degli Studi di Milano-Bicocca

I. Fina

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)

E. Fortunato

CEMOP/UNINOVA

Universidade NOVA de Lisboa

C. Frontera

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)

S. Fujita

Kyoto University

V. Garcia

Thales Group

S. T.B. Goennenwein

Technische Universität Dresden

C. G. Granqvist

Uppsala universitet

J. Grollier

Thales Group

R. Gross

Walther-Meissner-Institut für Tieftemperaturforschung

Technische Universität München

Nanosystems Initiative Munich (NIM)

A. Hagfeldt

Ecole Polytechnique Federale de Lausanne (EPFL)

G. Herranz

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)

K. Hono

National Institute for Materials Science (NIMS)

E. Houwman

MESA Institute for Nanotechnology

M. Huijben

MESA Institute for Nanotechnology

Alexei Kalaboukhov

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

D. J. Keeble

University of Dundee

G. Koster

MESA Institute for Nanotechnology

L. F. Kourkoutis

Kavli Institute at Cornell for Nanoscale Science

Cornell University

J. Levy

University of Pittsburgh

Pittsburgh Quantum Institute

M. Lira-Cantu

Institut Catala de Nanociencia i Nanotecnologia

J. L. MacManus-Driscoll

University of Cambridge

Jochen Mannhart

Max-Planck-Gesellschaft

R. Martins

Universita' degli Studi di Milano-Bicocca

Consiglo Nazionale Delle Richerche

S. Menzel

Pittsburgh Quantum Institute

T. Mikolajick

Technische Universität Dresden

NaMLab GGmbH

M. Napari

University of Cambridge

M. D. Nguyen

MESA Institute for Nanotechnology

G. A. Niklasson

Uppsala universitet

C. Paillard

University of Arkansas System

S. Panigrahi

CEMOP/UNINOVA

Universidade NOVA de Lisboa

G. Rijnders

MESA Institute for Nanotechnology

F. Sánchez

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)

P. Sanchis

Universitat Politecnica de Valencia (UPV)

S. Sanna

Danmarks Tekniske Universitet (DTU)

D. G. Schlom

Cornell University

U. Schroeder

NaMLab GGmbH

K. M. Shen

Kavli Institute at Cornell for Nanoscale Science

Cornell University

A. Siemon

RWTH Aachen University

Matjaz Spreitzer

Institut Jožef Stefan

H. Sukegawa

National Institute for Materials Science (NIMS)

R. Tamayo

Oxolutia S.L

J. van den Brink

Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

N. Pryds

Danmarks Tekniske Universitet (DTU)

F. Miletto Granozio

Superconductors, oxides and other innovative materials and devices

Applied Surface Science

0169-4332 (ISSN)

Vol. 482 1-93

Ämneskategorier

Materialkemi

Nanoteknik

Den kondenserade materiens fysik

DOI

10.1016/j.apsusc.2019.03.312

Mer information

Senast uppdaterat

2022-10-14