Electrically controlled spin-switch and evolution of Hanle spin precession in graphene
Artikel i vetenskaplig tidskrift, 2019

Next generation of spintronic devices aims to utilize the spin-polarized current injection and transport to control the magnetization dynamics in the spin logic and memory technology. However, the detailed evolution process of the frequently observed bias current-induced sign change phenomenon of the spin polarization has not been examined in details and the underlying microscopic mechanism is not well understood. Here, we report the observation of a systematic evolution of the sign change process of Hanle spin precession signal in the graphene nonlocal spintronic devices at room temperature. By tuning the interface tunnel resistances of the ferromagnetic contacts to graphene, different transformation processes of Hanle spin precession signal are probed in a controlled manner by tuning the injection bias current/voltage. Detailed analysis and first-principles calculations indicate a possible magnetic proximity and the energy dependent electronic structure of the ferromagnet-graphene interface can be responsible for the sign change process of the spin signal and open a new perspective to realize a spin-switch at very low bias-current or voltage.

spin injection

spintronics

Hanle spin precession

magnetic proximity effect

graphene

Författare

Bing Zhao

University of Science and Technology Beijing

Chalmers, Mikroteknologi och nanovetenskap (MC2)

Dmitrii Kholchriakov

Chalmers, Mikroteknologi och nanovetenskap (MC2)

Bogdan Karpiak

Chalmers, Mikroteknologi och nanovetenskap (MC2)

Anarnul Md Hoque

Chalmers, Mikroteknologi och nanovetenskap (MC2)

Lei Xu

Universiti Kebangsaan Singapura (NUS)

Lei Shen

Universiti Kebangsaan Singapura (NUS)

Yuan Ping Peng

Universiti Kebangsaan Singapura (NUS)

Xiaoguang Xu

University of Science and Technology Beijing

Yong Jiang

University of Science and Technology Beijing

Saroj P. Dash

Chalmers grafencentrum

Chalmers, Mikroteknologi och nanovetenskap (MC2)

2D Materials

2053-1583 (eISSN)

Vol. 6 3 035042

Ämneskategorier

Annan fysik

Annan elektroteknik och elektronik

Den kondenserade materiens fysik

DOI

10.1088/2053-1583/ab1d83

Mer information

Senast uppdaterat

2019-07-30