Generators and relations for (generalised) Cartan type superalgebras
Paper i proceeding, 2019

In Kac's classification of finite-dimensional Lie superalgebras, the contragredient ones can be constructed from Dynkin diagrams similar to those of the simple finite-dimensional Lie algebras, but with additional types of nodes. For example, A(n-1,0) = s (1|n) can be constructed by adding a "gray" node to the Dynkin diagram of An-1 = s (n), corresponding to an odd null root. The Cartan superalgebras constitute a difierent class, where the simplest example is Wpnq, the derivation algebra of the Grassmann algebra on n generators. Here we present a novel construction of Wpnq, from the same Dynkin diagram as A(n-1,0), but with additional generators and relations.

Författare

Lisa Carbone

Rutgers, The State University of New Jersey

Martin Cederwall

Chalmers, Fysik, Teoretisk fysik

Jakob Palmkvist

Chalmers, Fysik, Teoretisk fysik

Journal of Physics: Conference Series

17426588 (ISSN) 17426596 (eISSN)

Vol. 1194 1 012020

32nd International Colloquium on Group Theoretical Methods in Physics, ICGTMP 2018
Prague, Czech Republic,

Bortom rum och tid

Vetenskapsrådet (VR), 2016-01-01 -- 2019-12-31.

Ämneskategorier

Algebra och logik

Geometri

Matematisk analys

Fundament

Grundläggande vetenskaper

DOI

10.1088/1742-6596/1194/1/012020

Mer information

Senast uppdaterat

2019-11-08