Dynamic effects on yacht sails and rudders
Licentiatavhandling, 2019
The purpose of this thesis is to develop methods to predict the forces acting on sails and rudders in dynamic conditions.
RANS CFD is used to predict upwind sail aerodynamic forces. A comprehensive study of the numerical setup, physical modelling and uncertainties in the CFD solutions is presented. The spatial discretisation uncertainty is shown to be low for steady conditions, and the forces are well predicted. For dynamic conditions, mean values are predicted with reasonable accuracy. However, the instantaneous quantities show more scatter and a higher comparison error. Following careful analysis of the numerical simulations and experimental procedures, possible error sources are identified. For example, in the post-processing of experimental measurements, added mass forces had been removed incorrectly. For the numerical simulations, poor performance of the turbulence model may explain the error.
The dynamic characteristics of rudders for the Finn dinghy are investigated using full-scale towing tank tests. Considerable differences in both performance and handling are revealed. Also, the study highlights challenges faced when performing experimental testing of dynamic effects, such as the introduction of artificial constraints. The prediction of dynamic effects introduces additional uncertainties, regardless of whether experimental or numerical techniques are utilized, that need to be carefully controlled. Further studies are proposed to investigate these.
CFD
Sailing dynamics
towing tank
sail aerodynamics
rudder
verification
validation
RANS
Författare
Adam Persson
Chalmers, Mekanik och maritima vetenskaper, Marin teknik
CFD prediction of steady and unsteady upwind sail aerodynamics
Ocean Engineering,;Vol. 141(2017)p. 543-554
Artikel i vetenskaplig tidskrift
Performance evaluation and ranking of 7 rudders for the Finn dinghy
Journal of Sailing Technology,;Vol. 3(2018)p. 1-18
Artikel i vetenskaplig tidskrift
Drivkrafter
Hållbar utveckling
Styrkeområden
Transport
Materialvetenskap
Infrastruktur
C3SE (Chalmers Centre for Computational Science and Engineering)
Ämneskategorier
Farkostteknik
Strömningsmekanik och akustik
Utgivare
Chalmers
HB3, Hörsalsvägen 10
Opponent: Dr. Ignazio M. Viola, Institute for Energy Systems, University of Edinburgh, United Kingdom