The interchange process with reversals on the complete graph
Artikel i vetenskaplig tidskrift, 2019

We consider an extension of the interchange process on the complete graph, in which a fraction of the transpositions are replaced by ‘reversals’. The model is motivated by statistical physics, where it plays a role in stochastic representations of xxz-models. We prove convergence to PD(1) of the rescaled cycle sizes, above the critical point 2 for the appearance of macroscopic cycles. This extends a result of Schramm on convergence to PD(1) for the usual interchange process.

Interchange process

Poisson-Dirichlet distribution

XXZ model

Författare

Jakob Björnberg

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Michał Kotowski

Uniwersytet Warszawski

Benjamin Lees

Technische Universität Darmstadt

Piotr Miłoś

Polish Academy of Sciences

Electronic Journal of Probability

10836489 (eISSN)

Vol. 24 108

Ämneskategorier

Beräkningsmatematik

Sannolikhetsteori och statistik

Matematisk analys

DOI

10.1214/19-EJP366

Mer information

Senast uppdaterat

2021-02-17