Intense laser-plasma interactions
Doktorsavhandling, 2019
In this thesis, two separate, yet highly related, topics are pursued. The first half of the thesis concerns plasma-based techniques for ion acceleration, through the interaction of intense laser fields with solid density targets. In the most accessible acceleration scheme, the ion acceleration is mediated by a population of suprathermal, hot, electrons produced by the rapid heating of the target surface. We study the effect of adding microstructures to the target surface, show how this affects the distribution of hot electrons and discuss its implications for ion acceleration. We further study a novel acceleration scheme, aimed at achieving controllable ion acceleration using a frequency chirped standing wave. We analyse the robustness of this scheme, named chirped-standing-wave acceleration, under non-ideal conditions and discuss its prospects and limitations.
The second half of the thesis concerns laser-matter interactions where the emission of high-energy photons necessitates a quantum mechanical description of radiation reaction and enables a prolific production of electron-positron pairs. In this regime, we study the interaction of an energetic electron beam with an optimally focused laser field, in the form of a dipole wave, and highlight its capabilities as a multi-GeV photon source. We further discuss the phenomena observed in this setup, in particular investigating the emergence of pair production cascades, and provide a review of previous results. Finally, we highlight a number of regimes within reach of upcoming laser facilities.
radiation reaction
radiation generation
particle-in-cell
plasma
pair production cascades
ion acceleration
laser
Författare
Joel Magnusson
Chalmers, Fysik, Teoretisk fysik
Multiple colliding laser pulses as a basis for studying high-field high-energy physics
Physical Review A - Atomic, Molecular, and Optical Physics,;Vol. 100(2019)
Artikel i vetenskaplig tidskrift
Laser-particle collider for multi-GeV photon production
Physical Review Letters,;Vol. 122(2019)
Artikel i vetenskaplig tidskrift
Prospects for laser-driven ion acceleration through controlled displacement of electrons by standing waves
Physics of Plasmas,;Vol. 25(2018)
Artikel i vetenskaplig tidskrift
Energy partitioning and electron momentum distributions in intense laser-solid interactions
European Physical Journal D,;Vol. 71(2017)
Artikel i vetenskaplig tidskrift
Despite its scarcity on Earth, plasma is the most common state of matter in the universe, a majority of which is contained in stars. A plasma can be thought of as a charged fluid and is capable of interacting with both itself and its surroundings over large distances through self-generated electromagnetic fields. As a result, it can exhibit a wide range of complex phenomena, lending itself to be exploited for numerous unique applications. Perhaps most famous amongst these is the prospect of clean energy through controlled nuclear fusion, by mimicking the extreme environment of the sun. Because of the ability of high-intensity lasers to create such environments, they can be used for inertial confinement fusion and laboratory astrophysics.
Through their properties as charged media, plasmas are also capable of sustaining the immense acceleration gradients created by an intense laser field, making it possible to accelerate particles to high energies over very short, centimeter-scale, distances. At sufficiently high intensities, the field can also trigger the emission of high-energy photons and the creation of electron-positron pairs. High-intensity lasers have therefore become instrumental in creating compact particle accelerators and radiation sources, which themselves have a wide range of applications within materials, fundamental and medical sciences, and can as an example be used for various imaging techniques.
This thesis is concerned with the topics of particle acceleration and radiation generation using intense laser fields, focusing in particular on the acceleration of light ions, such as protons, and the generation of gamma radiation. Using state-of-the-art numerical codes, we have investigated a novel ion acceleration scheme allowing for a greater control over the acceleration process as well as the use of optimally focused laser radiation promising an efficient generation of gamma radiation at both current and upcoming laser facilities.
Plasmabaserade kompakta jonkällor
Knut och Alice Wallenbergs Stiftelse (KAW 2013.0078), 2014-07-01 -- 2019-06-30.
Ämneskategorier
Acceleratorfysik och instrumentering
Atom- och molekylfysik och optik
Fusion, plasma och rymdfysik
ISBN
978-91-7905-198-3
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4665
Utgivare
Chalmers
PJ-salen, Fysikgården 2, Chalmers
Opponent: Laurent Gremillet, CEA, Frankrike