Electrochemical etching of AlGaN for the realization of thin-film devices
Artikel i vetenskaplig tidskrift, 2019

Heterogeneously integrated AlGaN epitaxial layers will be essential for future optical and electrical devices like thin-film flip-chip ultraviolet (UV) light-emitting diodes, UV vertical-cavity surface-emitting lasers, and high-electron mobility transistors on efficient heat sinks. Such AlGaN-membranes will also enable flexible and micromechanical devices. However, to develop a method to separate the AlGaN-device membranes from the substrate has proven to be challenging, in particular, for high-quality device materials, which require the use of a lattice-matched AlGaN sacrificial layer. We demonstrate an electrochemical etching method by which it is possible to achieve complete lateral etching of an AlGaN sacrificial layer with up to 50% Al-content. The influence of etching voltage and the Al-content of the sacrificial layer on the etching process is investigated. The etched N-polar surface shows the same macroscopic topography as that of the as-grown epitaxial structure, and the root-mean square roughness is 3.5 nm for 1 µm x 1 µm scan areas. Separated device layers have a well-defined thickness and smooth etched surfaces. Transferred multi-quantum-well structures were fabricated and investigated by time-resolved photoluminescence measurements. The quantum wells showed no sign of degradation caused by the thin-film process.

Lift-off

Thin-film

AlGaN

Electrochemical etching

Författare

Michael Alexander Bergmann

Chalmers, Mikroteknologi och nanovetenskap (MC2), Fotonik

Johannes Enslin

Technische Universität Berlin

Rinat Yapparov

Kungliga Tekniska Högskolan (KTH)

Filip Hjort

Chalmers, Mikroteknologi och nanovetenskap (MC2), Fotonik

Björn Wickman

Chalmers, Fysik, Kemisk fysik

Saulius Marcinkevičius

Kungliga Tekniska Högskolan (KTH)

Tim Wernicke

Technische Universität Berlin

Michael Kneissl

Technische Universität Berlin

Åsa Haglund

Chalmers, Mikroteknologi och nanovetenskap (MC2), Fotonik

Applied Physics Letters

0003-6951 (ISSN) 1077-3118 (eISSN)

Vol. 115 18 182103-

Styrkeområden

Nanovetenskap och nanoteknik (2010-2017)

Ämneskategorier

Annan fysik

Nanoteknik

Den kondenserade materiens fysik

Infrastruktur

Chalmers materialanalyslaboratorium

Nanotekniklaboratoriet

DOI

10.1063/1.5120397

Mer information

Senast uppdaterat

2019-11-28