Automated Quantification of Diseased Thoracic Aortic Longitudinal Centerline and Surface Curvatures
Artikel i vetenskaplig tidskrift, 2020

Precise description of vascular morphometry is crucial to support medical device manufacturers and clinicians for
improving device development and interventional outcomes. A compact and intuitive method is presented to
automatically characterize the surface geometry of tubular anatomic structures and quantify surface curvatures
starting from generic stereolithographic surfaces. The method was validated with software phantoms and used
to quantify the longitudinal surface curvatures of 37 human thoracic aortas with aneurysm or dissection. The
quantification of surface curvatures showed good agreement with analytic solutions from the software phantoms,
and demonstrated better agreement as compared to estimation methods using only centerline geometry and
cross-sectional radii. For the human thoracic aortas, longitudinal inner surface curvature was significantly higher
than centerline curvature (0.33±0.06 vs. 0.16±0.02 cm-1 for mean; 1.38±0.48 vs. 0.45±0.11 cm-1 for peak; both
p<0.001). These findings show the importance of quantifying surface curvatures in order to better describe the
geometry and biomechanical behavior of the thoracic aorta, which can assist in treatment planning and supplying
device manufactures with more precise boundary conditions for mechanical evaluation.

geometric modeling

Thoracic aorta

surface curvature




Johan Bondesson

Chalmers, Mekanik och maritima vetenskaper, Dynamik

Ga-Young Suh

Torbjörn Lundh

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Jason T. Lee

Michael D. Dake

Christopher P. Cheng

Journal of Biomechanical Engineering

0148-0731 (ISSN) 1528-8951 (eISSN)

Vol. 142 041007


Annan medicinteknik


Annan materialteknik


Livsvetenskaper och teknik (2010-2018)



Mer information

Senast uppdaterat