Classification of Quantum Groups via Galois Cohomology
Artikel i vetenskaplig tidskrift, 2020
The aim of the present paper is to extend these results to all twisted Belavin–Drinfeld cohomology and thus, to present classification of quantum groups in terms of Galois cohomology and the so-called orders. Low dimensional cases sl(2) and sl(3) are considered in more details using a theory of cubic rings developed by B. N. Delone and D. K. Faddeev in Delone and Faddeev (The theory of irrationalities of the third degree. Translations of mathematical monographs, vol 10. AMS, Providence, 1964). Our results show that there exist yet unknown quantum groups for Lie algebras of the types An, D2n+1, E6, not mentioned in Etingof et al. (J Am Math Soc 13:595–609, 2000).
Författare
Eugene Karolinsky
V.N. Karazin Kharkiv National University
Arturo Pianzola
Centro de Altos Estudios en Ciencia Exactas
University of Alberta
Alexander Stolin
Chalmers, Matematiska vetenskaper, Algebra och geometri
Communications in Mathematical Physics
0010-3616 (ISSN) 1432-0916 (eISSN)
Vol. 377 2 1099-1129Ämneskategorier
Algebra och logik
Geometri
Matematisk analys
DOI
10.1007/s00220-019-03597-z