Grid-independent Eulerian-Lagrangian approaches for simulations of solid fuel particle combustion
Artikel i vetenskaplig tidskrift, 2020

In this study, a computational fluid dynamics (CFD) model with three coarse graining algorithms is developed with the implementation of a layer based thermally thick particle model. Three additional coupling methods, cube averaging method (CAM), two-grid method (TGM) and diffusion-based method (DBM), are implemented. These coupling methods are validated and compared with the widely used particle centroid method (PCM) for combustion of a biomass particle in a single particle combustor. It is shown that the PCM has a strong dependence on the grid size, whereas the CAM and TGM are not only grid independent but also improve the predictability of the simulations. Meanwhile, a new parameter, the coupling length, is introduced. This parameter affects the sampling of the gas phase properties required for the particle model and the distribution of the solid phase properties. A method to estimate the coupling length by using empirical correlations is given. In general, it is found that a too small coupling length underestimates the heating-up rate and devolatilization rate, while a too large coupling length overestimates the O2 concentration at the particle surface. The coupling length also has an influence on the distribution of the gas phase products.

combustion

CFD

CFDSolid fuelEulerian-Lagrangian couplingCombustion

solid fuel conversion

Författare

Jingyuan Zhang

Norges teknisk-naturvitenskapelige universitet

Tian Li

Norges teknisk-naturvitenskapelige universitet

Henrik Ström

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Norges teknisk-naturvitenskapelige universitet

Terese Lövås

Norges teknisk-naturvitenskapelige universitet

Chemical Engineering Journal

0300-9467 (ISSN)

Vol. 387 123964

Drivkrafter

Hållbar utveckling

Ämneskategorier

Energiteknik

Kemiteknik

Strömningsmekanik och akustik

Styrkeområden

Energi

Fundament

Grundläggande vetenskaper

DOI

10.1016/j.cej.2019.123964

Mer information

Senast uppdaterat

2020-03-10