Human Fall Detection using Co-Saliency-Enhanced Deep Recurrent Convolutional Neural Networks
Artikel i vetenskaplig tidskrift, 2019

This paper addresses issues of fall detection from videos for e-healthcare and assisted-living. Instead of using hand-crafted features from videos, we exploit a dedicated recurrent convolutional network (RCN) architecture for fall detection in combination with co-saliency enhancement. In the proposed scheme, the recurrent neural network (RNN) is realized by Long Short-Term Memory (LSTM) connecting to a set of Convolutional Neural Networks (CNNs), where each video is modelled as an ordered sequence, containing several frames. In such a way, the sequential information in video is preserved. To further enhance the performance, we propose to employ co-saliency-enhanced video frames as the inputs of RCN, where salient human activity regions are enhanced. Experimental results have shown that the proposed scheme is effective. Further, our results have shown very good test performance (accuracy 98.12%), and employing the co-saliency-enhanced RCN has led to the improvement in performance (0.70% on test) as comparing to that without co-saliency. Comparisons with two existing methods have provided further support to effectiveness of the proposed scheme.

recurrent convolutional network

human fall detection

Long Short-Term Memory

co-saliency enhancement.

e-healthcare

Författare

Chenjie Ge

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Irene Yu-Hua Gu

Chalmers, Elektroteknik

Jie Yang

Shanghai Jiao Tong University

Internationa Research Journal of Engineering and Technology (IRJET)

2395-0056 (eISSN)

Vol. 6 9 993-1000

Styrkeområden

Hälsa och teknik

Ämneskategorier (SSIF 2011)

Elektroteknik och elektronik

Signalbehandling

Datorseende och robotik (autonoma system)

Mer information

Senast uppdaterat

2020-01-28