Electrical Control of Hybrid Monolayer Tungsten Disulfide-Plasmonic Nanoantenna Light-Matter States at Cryogenic and Room Temperatures
Artikel i vetenskaplig tidskrift, 2020

Hybrid light-matter states-polaritons-have attracted considerable scientific interest recently, motivated by their potential for development of nonlinear and quantum optical schemes. To realize such states, monolayer transition metal dichalcogenides (TMDCs) have been widely employed as excitonic materials. In addition to neutral excitons, TMDCs host charged excitons, which enables active tuning of hybrid light-matter states by electrical means. Although several reports demonstrated charged exciton-polaritons in various systems, the full-range interaction control attainable at room temperature has not been realized. Here, we demonstrate electrically tunable charged exciton-plasmon polaritons in a hybrid tungsten disulfide (WS2) monolayer-plasmonic nanoantenna system. We show that electrical gating of monolayer WS2 allows tuning the oscillator strengths of neutral and charged excitons not only at cryogenic but also at room temperature, both at vacuum and atmospheric pressure. Such electrical control enables a full-range tunable switching from strong neutral exciton-plasmon coupling to strong charged exciton-plasmon coupling. Our experimental findings allow discussing beneficial and limiting factors of charged exciton-plasmon polaritons, as well as offer routes toward realization of charged polaritonic devices at ambient conditions.

trion

exciton

strong coupling

silver nanoprism

WS 2

polaron

plasmonics

Författare

Battulga Munkhbat

Chalmers, Fysik, Nano- och biofysik

Denis Baranov

Chalmers, Fysik, Nano- och biofysik

Ankit Bisht

Chalmers, Fysik, Bionanofotonik

Anamul Md Hoque

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Bogdan Karpiak

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Saroj Prasad Dash

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Timur Shegai

Chalmers, Fysik, Nano- och biofysik

ACS Nano

1936-0851 (ISSN) 1936-086X (eISSN)

Vol. 14 1 1196-1206

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik

DOI

10.1021/acsnano.9b09684

Mer information

Senast uppdaterat

2020-03-10