Automated Derivation of Random Generators for Algebraic Data Types
Licentiatavhandling, 2020
To mitigate this issues, this thesis explores different ideas for automatically deriving random generators based on existing static information. In this light, we design and implement different derivation algorithms in Haskell for obtaining random generators of values encoded using Algebraic Data Types (ADTs). Although there exists other tools designed directly or indirectly for this very purpose, they are not without disadvantages. In particular, we aim to tackle the lack of flexibility and static guarantees in the distribution induced by derived generators. We show how automatically derived generators for ADTs can be framed using a simple yet powerful stochastic model. This models can be used to obtain analytical guarantees about the distribution of values produced by the derived generators. This, in consequence, can be used to optimize the stochastic generation parameters of the derived generators towards target distributions set by the user, providing more flexible derivation mechanisms.
Random Testing, Penetration Testing, Meta-programming, Haskell
Författare
Claudio Agustin Mista
Chalmers, Data- och informationsteknik, Informationssäkerhet
Generating Random Structurally Rich Algebraic Data Type Values
2019 IEEE/ACM 14th International Workshop on Automation of Software Test (AST),;(2019)p. 48-54
Paper i proceeding
Deriving Compositional Random Generators
ACM International Conference Proceeding Series,;Vol. 25 September 2019(2019)
Paper i proceeding
Branching Processes for QuickCheck Generators
Proceedings of the 11th ACM SIGPLAN International Symposium on Haskell,;Vol. 53(2018)p. 1-13
Paper i proceeding
Octopi: Säker Programering för Sakernas Internet
Stiftelsen för Strategisk forskning (SSF) (RIT17-0023), 2018-03-01 -- 2023-02-28.
WebSec: Säkerhet i webb-drivna system
Stiftelsen för Strategisk forskning (SSF) (RIT17-0011), 2018-03-01 -- 2023-02-28.
Styrkeområden
Informations- och kommunikationsteknik
Ämneskategorier
Sannolikhetsteori och statistik
Datavetenskap (datalogi)
Datorsystem
Utgivare
Chalmers
EDIT EA
Opponent: Leonidas Lampropoulos, University of Maryland/University Of Pennsylvania, United States