Local quantification of mesoporous silica microspheres using multiscale electron tomography and lattice Boltzmann simulations
Artikel i vetenskaplig tidskrift, 2020

The multiscale pore structure of mesoporous silica microspheres plays an important role for tuning mass transfer kinetics in technological applications such as liquid chromatography. While local analysis of a pore network in such materials has been previously achieved, multiscale quantification of microspheres down to the nanometer scale pore level is still lacking. Here we demonstrate for the first time, by combining low convergence angle scanning transmission electron microscopy tomography (LC-STEM tomography) with image analysis and lattice Boltzmann simulations, that the multiscale pore network of commercial mesoporous silica microspheres can be quantified. This includes comparing the local tortuosity and intraparticle diffusion coefficients between different regions within the same microsphere. The results, spanning more than two orders of magnitude between nanostructures and entire object, are in good agreement with bulk characterization techniques such as nitrogen gas physisorption and add valuable local information for tuning mass transfer behavior (in liquid chromatography or catalysis) on the single microsphere level.

Scanning transmission electron microscopy

Quantitative electron tomography

Intraparticle diffusivity

Lattice Boltzmann simulations

Mesoporous silica


Andreas J. Fijneman

Technische Universiteit Eindhoven

Nouryon Pulp and Performance Chemicals AB

Maurits Goudzwaard

Technische Universiteit Eindhoven

Arthur D.A. Keizer

Technische Universiteit Eindhoven

Paul H.H. Bomans

Technische Universiteit Eindhoven

Tobias Gebäck

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

M. Palmlof

Nouryon Pulp and Performance Chemicals AB

Michael Persson

Nouryon Pulp and Performance Chemicals AB

Joakim Högblom

Nouryon Pulp and Performance Chemicals AB

Gijsbertus de With

Technische Universiteit Eindhoven

Heiner Friedrich

Technische Universiteit Eindhoven

Microporous and Mesoporous Materials

1387-1811 (ISSN)

Vol. 302 110243


Annan data- och informationsvetenskap

Datorseende och robotik (autonoma system)

Medicinsk bildbehandling



Mer information

Senast uppdaterat