Multiple Feedback in Low-Metallicity Massive Star Formation
Paper i proceeding, 2019

We theoretically investigate the impact of feedback and its metallicity dependence in massive star formation from prestellar cores at all metallicity range. We include the feedback by MHD disk winds, radiation pressure, and photoevaporation solving the evolution of protostars and accretion flows self-consistently. Interestingly, we find that the feedback does not set the upper mass limit of stellar birth mass at any metallicity. At the solar metallicity, the MHD disk wind is the dominant feedback to set the star formation efficiencies (SFEs) from the prestellar cores similar to low-mass star formation. The SFE is found to be lower at lower surface density environment. The photoevaporation becomes significant at the low metallicity of Z < 10(-2) Z(circle dot). Considering this efficient photoevaporation, we conclude that the IMF slope is steeper, i.e., massive stars are rarer at the extremely metal-poor environment of 10(-5)-10(-3)Z(circle dot). Our study raises a question on the common assumption of the universal IMF with a truncated at 100M(circle dot). Since the total feedback strength in the cluster/galaxy scale is sensitive to the number fraction of massive stars, the re-evaluations of IMF at various environments are necessary.

stars: formation

stars: evolution

stars: winds, outflows

stars: luminosity function, mass function

Författare

Kei E. I. Tanaka

National Astronomical Observatory of Japan

Osaka University

Jonathan Tan

University of Virginia

Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik, Galaktisk astrofysik

Yichen Zhang

RIKEN

Takashi Hosokawa

Kyoto University

Proceedings of the International Astronomical Union

1743-9213 (ISSN) 1743-9221 (eISSN)

Vol. 14 S344 190-194

344th Symposium of the International-Astronomical-Union (IAU)
Vienna, Austria,

Ämneskategorier

Astronomi, astrofysik och kosmologi

Annan fysik

Den kondenserade materiens fysik

DOI

10.1017/S1743921318005549

Mer information

Senast uppdaterat

2020-06-25