Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems
Artikel i vetenskaplig tidskrift, 2006

Modulated Fourier expansion is used to show long-time near-conservation of the total and oscillatory energies of numerical methods for Hamiltonian systems with highly oscillatory solutions. The numerical methods considered are an extension of the trigonometric methods. A brief discussion of conservation properties in the continuous problem and in the multi-frequency case is also given.

Trigonometric methods

Energy conservation

Hamiltonian systems

Oscillatory solutions

Modulated Fourier expansion

Författare

David Cohen

Université de Genève

Universität Tübingen

IMA Journal of Numerical Analysis

0272-4979 (ISSN) 1464-3642 (eISSN)

Vol. 26 1 34-59

Ämneskategorier

Matematik

DOI

10.1093/imanum/dri020

Mer information

Senast uppdaterat

2022-03-18