Linear energy-preserving integrators for Poisson systems
Artikel i vetenskaplig tidskrift, 2011

For Hamiltonian systems with non-canonical structure matrix a new class of numerical integrators is proposed. The methods exactly preserve energy, are invariant with respect to linear transformations, and have arbitrarily high order. Those of optimal order also preserve quadratic Casimir functions. The discussion of the order is based on an interpretation as partitioned Runge-Kutta method with infinitely many stages.

Partitioned Runge-Kutta method

Poisson system

Gaussian quadrature

Collocation

Energy preservation

Casimir function

Författare

David Cohen

Universität Basel

Ernst Hairer

Université de Genève

BIT Numerical Mathematics

0006-3835 (ISSN) 1572-9125 (eISSN)

Vol. 51 1 91-101

Ämneskategorier

Matematik

DOI

10.1007/s10543-011-0310-z

Mer information

Senast uppdaterat

2022-02-24