Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations
Artikel i vetenskaplig tidskrift, 2012

We study a class of numerical methods for a system of second-order SDE driven by a linear fast force generating high frequency oscillatory solutions. The proposed schemes permit the use of large step sizes, have uniform global error bounds in the position (i. e. independent of the large frequencies present in the SDE) and offer various additional properties. This new family of numerical integrators for SDE can be viewed as a stochastic generalisation of the trigonometric integrators for highly oscillatory deterministic problems.

Författare

David Cohen

Universität Basel

Magdalena Sigg

Universität Basel

Numerische Mathematik

0029-599X (ISSN) 0945-3245 (eISSN)

Vol. 121 1 1-29

Ämneskategorier

Matematik

DOI

10.1007/s00211-011-0426-8

Mer information

Senast uppdaterat

2022-02-09