On sensing principles using temporally extended bar-codes
Artikel i vetenskaplig tidskrift, 2020

The detection of ionic variation patterns could be a significant marker for the diagnosis of neurological and other diseases. This paper introduces a novel idea for training chemical sensors to recognise patterns of ionic variations. By using an external voltage signal, a sensor can be trained to output distinct time-series signals depending on the state of the ionic solution. Those sequences can be analysed by a relatively simple readout layer for diagnostic purposes. The idea is demonstrated on a chemical sensor that is sensitive to zinc ions with a simple goal of classifying zinc ionic variations as either stable or varying. The study features both theoretical and experimental results. By extensive numerical simulations, it has been shown that the proposed method works successfully in silico. Distinct time-series signals are found which occur with a high probability under only one class of ionic variations. The related experimental results point in the right direction.

pattern recognition

Internet of Things

Biosensors

data compression

bar codes

ionic variations

Författare

Vasileios Athanasiou

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

Kiran Tadi

The Hebrew University Of Jerusalem

Mattan Hurevich

The Hebrew University Of Jerusalem

Shlomo Yitzchaik

The Hebrew University Of Jerusalem

Aldo Jesorka

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Zoran Konkoli

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

IEEE Sensors Journal

1530-437X (ISSN)

Vol. 20 13 6782-6791 9019829

Reservoir Computing with Real-time Data for future IT (RECORD-IT)

Europeiska kommissionen (Horisont 2020), 2015-09-01 -- 2018-08-31.

Ämneskategorier

Materialkemi

Systemvetenskap

Elektroteknik och elektronik

Styrkeområden

Materialvetenskap

DOI

10.1109/JSEN.2020.2977462

Mer information

Senast uppdaterat

2020-06-30