Machine Learning Methods for Image Analysis in Medical Applications, from Alzheimer's Disease, Brain Tumors, to Assisted Living
Doktorsavhandling, 2020

Visa mer

convolutional neural networks

Alzheimer's disease detection

machine learning

deep learning

fall detection

glioma subtype classification

generative adversarial networks

recurrent convolutional networks

spiking neural networks

visual prosthesis

semi-supervised learning

Författare

Chenjie Ge

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Inkluderade delarbeten

Multi-Stream Multi-Scale Deep Convolutional Networks for Alzheimer's Disease Detection using MR Images

Neurocomputing,;Vol. 350(2019)p. 60-69

Artikel i vetenskaplig tidskrift

Enlarged Training Dataset by Pairwise GANs for Molecular-Based Brain Tumor Classification

IEEE Access,;Vol. 8(2020)p. 22560-22570

Artikel i vetenskaplig tidskrift

Deep Learning and Multi-Sensor Fusion for Glioma Classification Using Multistream 2D Convolutional Networks

Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS,;(2018)p. 5894-5897

Paper i proceeding

Deep semi-supervised learning for brain tumor classification

BMC Medical Imaging,;Vol. 20(2020)

Artikel i vetenskaplig tidskrift

Human fall detection using segment-level CNN features and sparse dictionary learning

IEEE International Workshop on Machine Learning for Signal Processing, MLSP,;(2017)p. 6-

Paper i proceeding

Human Fall Detection using Co-Saliency-Enhanced Deep Recurrent Convolutional Neural Networks

Internationa Research Journal of Engineering and Technology (IRJET),;Vol. 6(2019)p. 993-1000

Artikel i vetenskaplig tidskrift

Co-saliency detection via inter and intra saliency propagation

Signal Processing: Image Communication,;Vol. 44(2016)p. 69-83

Artikel i vetenskaplig tidskrift

A spiking neural network model for obstacle avoidance in simulated prosthetic vision

Information Sciences,;Vol. 399(2017)p. 30-42

Artikel i vetenskaplig tidskrift

Populärvetenskaplig beskrivning

Visa mer

Forskningsprojekt

Research on key Methods on Semi-Supervised Machine Learning of Big Data, with Applications to Assisted-Living in Elderly, Traffic Safety and Medical Diagnosis

STINT (CH2015-6193), 2016-01-01 -- 2018-12-31.

Kategorisering

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2011)

Neurovetenskaper

Neurologi

Datavetenskap (datalogi)

Radiologi och bildbehandling

Datorseende och robotik (autonoma system)

Drivkrafter

Innovation och entreprenörskap

Identifikatorer

ISBN

978-91-7905-322-2

Övrigt

Serie

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4789

Utgivare

Chalmers

Examination

2020-09-01 13:00 -- 16:00

"Femman" 5430, floor 5, EDIT building, Hörsalsvägen 11

Online

Opponent: Prof. Danica Kragic Jensfelt, Royal Institute of Technology (KTH), Sweden

Mer information

Senast uppdaterat

2023-11-08