Chemical Sensing with Atomically Thin Platinum Templated by a 2D Insulator
Artikel i vetenskaplig tidskrift, 2020

Boosting the sensitivity of solid‐state gas sensors by incorporating nanostructured materials as the active sensing element can be complicated by interfacial effects. Interfaces at nanoparticles, grains, or contacts may result in nonlinear current–voltage response, high electrical resistance, and ultimately, electric noise that limits the sensor read‐out. This work reports the possibility to prepare nominally one atom thin, electrically continuous platinum layers by physical vapor deposition on the carbon zero layer (also known as the buffer layer) grown epitaxially on silicon carbide. With a 3–4 Å thin Pt layer, the electrical conductivity of the metal is strongly modulated when interacting with chemical analytes, due to charges being transferred to/from Pt. The strong interaction with chemical species, together with the scalability of the material, enables the fabrication of chemiresistor devices for electrical read‐out of chemical species with sub part‐per‐billion (ppb) detection limits. The 2D system formed by atomically thin Pt on the carbon zero layer on SiC opens up a route for resilient and high sensitivity chemical detection, and can be the path for designing new heterogenous catalysts with superior activity and selectivity.

atomically thin materials


buffer layer

chemical sensors


Kyung Ho Kim

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Hans He

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Marius Rodner

Linköpings universitet

Rositsa Yakimova

Linköpings universitet

Karin Larsson

Uppsala universitet

Marten Piantek

Universidad de Zaragoza

David Serrate

Universidad de Zaragoza

Alexei Zakharov

Max IV-laboratoriet

Sergey Kubatkin

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Jens Eriksson

Linköpings universitet

Samuel Lara Avila

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Advanced Materials Interfaces

2196-7350 (eISSN)

Vol. 7 12 1902104


Nanovetenskap och nanoteknik





Den kondenserade materiens fysik


Chalmers materialanalyslaboratorium




Mer information

Senast uppdaterat