Estimating Dixmier traces of Hankel operators in Lorentz ideals
Artikel i vetenskaplig tidskrift, 2020

In this paper we study Dixmier traces of powers of Hankel operators in Lorentz ideals. We extend results of Engliš-Zhang to the case of powers p≥1 and general Lorentz ideals starting from abstract extrapolation results of Gayral-Sukochev. In the special case p=2,4,6 we give an exact formula for the Dixmier trace. For general p, we give upper and lower bounds on the Dixmier trace. We also construct, for any p and any Lorentz ideal, examples of non-measurable Hankel operators.

Von Neumann algebra

Besov space

Dixmier trace

Hankel operator

banach limit

Hardy space

Författare

Magnus C H T Goffeng

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Alexandr Usachev

Central South University

Journal of Functional Analysis

0022-1236 (ISSN) 1096-0783 (eISSN)

Vol. 279 7 108688

Ämneskategorier

Algebra och logik

Geometri

Matematisk analys

DOI

10.1016/j.jfa.2020.108688

Mer information

Senast uppdaterat

2024-10-28