Mechanical Behavior of Melt‐Mixed 3D Hierarchical Graphene/Polypropylene Nanocomposites
Artikel i vetenskaplig tidskrift, 2020

The mechanical properties of novel low percolation melt-mixed 3D hierarchical graphene/polypropylene nanocomposites are analyzed in this study. The analysis spans a broad range of techniques and time scales, from impact to tensile, dynamic mechanical behavior, and creep. The applicability of the time–temperature superposition principle and its limitations in the construction of the master curve for the isotactic polypropylene (iPP)-based graphene nanocomposites has been verified and presented. The Williams–Landel–Ferry method has been used to evaluate the dynamics and also Cole–Cole curves were presented to verify the thermorheological character of the nanocomposites. Short term (quasi-static) tensile tests, creep, and impact strength measurements were used to evaluate the load transfer efficiency. A significant increase of Young’s modulus with increasing filler content indicates reasonably good dispersion and adhesion between the iPP and the filler. The Young’s modulus results were compared with predicted modulus values using Halpin–Tsai model. An increase in brittleness resulting in lower impact strength values has also been recorded.

graphene

mechanical properties

nanocomposites

time–temperature superposition

Författare

Karolina Gaska

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Georgia Manika

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Thomas Gkourmpis

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Davide Trachida

Borealis GmbH

Antonis Gitsas

Borealis GmbH

Roland Kádár

2D-Tech

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Polymers

2073-4360 (eISSN)

Vol. 12 6 1309

Högpresterande och skalbara skräddarsydda grafen - polyolefin nanokompositer

VINNOVA (2018-03311), 2018-11-30 -- 2021-02-28.

Ämneskategorier

Materialteknik

Styrkeområden

Materialvetenskap

DOI

10.3390/polym12061309

Mer information

Senast uppdaterat

2023-10-09